Project Alice
Loading...
Searching...
No Matches
cover.c
Go to the documentation of this file.
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11/* *****************************************************************************
12 * Constructs a dictionary using a heuristic based on the following paper:
13 *
14 * Liao, Petri, Moffat, Wirth
15 * Effective Construction of Relative Lempel-Ziv Dictionaries
16 * Published in WWW 2016.
17 *
18 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19 ******************************************************************************/
20
21/*-*************************************
22* Dependencies
23***************************************/
24#include <stdio.h> /* fprintf */
25#include <stdlib.h> /* malloc, free, qsort */
26#include <string.h> /* memset */
27#include <time.h> /* clock */
28
29#ifndef ZDICT_STATIC_LINKING_ONLY
30# define ZDICT_STATIC_LINKING_ONLY
31#endif
32
33#include "../common/mem.h" /* read */
34#include "../common/pool.h" /* POOL_ctx */
35#include "../common/threading.h" /* ZSTD_pthread_mutex_t */
36#include "../common/zstd_internal.h" /* includes zstd.h */
37#include "../common/bits.h" /* ZSTD_highbit32 */
38#include "../zdict.h"
39#include "cover.h"
40
41/*-*************************************
42* Constants
43***************************************/
51#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
52#define COVER_DEFAULT_SPLITPOINT 1.0
53
54/*-*************************************
55* Console display
56***************************************/
57#ifndef LOCALDISPLAYLEVEL
58static int g_displayLevel = 0;
59#endif
60#undef DISPLAY
61#define DISPLAY(...) \
62 { \
63 fprintf(stderr, __VA_ARGS__); \
64 fflush(stderr); \
65 }
66#undef LOCALDISPLAYLEVEL
67#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
68 if (displayLevel >= l) { \
69 DISPLAY(__VA_ARGS__); \
70 } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
71#undef DISPLAYLEVEL
72#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
73
74#ifndef LOCALDISPLAYUPDATE
75static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
76static clock_t g_time = 0;
77#endif
78#undef LOCALDISPLAYUPDATE
79#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
80 if (displayLevel >= l) { \
81 if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
82 g_time = clock(); \
83 DISPLAY(__VA_ARGS__); \
84 } \
85 }
86#undef DISPLAYUPDATE
87#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
88
89/*-*************************************
90* Hash table
91***************************************
92* A small specialized hash map for storing activeDmers.
93* The map does not resize, so if it becomes full it will loop forever.
94* Thus, the map must be large enough to store every value.
95* The map implements linear probing and keeps its load less than 0.5.
96*/
97
98#define MAP_EMPTY_VALUE ((U32)-1)
99typedef struct COVER_map_pair_t_s {
103
104typedef struct COVER_map_s {
110
114static void COVER_map_clear(COVER_map_t *map) {
115 memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
116}
117
124static int COVER_map_init(COVER_map_t *map, U32 size) {
125 map->sizeLog = ZSTD_highbit32(size) + 2;
126 map->size = (U32)1 << map->sizeLog;
127 map->sizeMask = map->size - 1;
128 map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
129 if (!map->data) {
130 map->sizeLog = 0;
131 map->size = 0;
132 return 0;
133 }
134 COVER_map_clear(map);
135 return 1;
136}
137
141static const U32 COVER_prime4bytes = 2654435761U;
142static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
143 return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
144}
145
149static U32 COVER_map_index(COVER_map_t *map, U32 key) {
150 const U32 hash = COVER_map_hash(map, key);
151 U32 i;
152 for (i = hash;; i = (i + 1) & map->sizeMask) {
153 COVER_map_pair_t *pos = &map->data[i];
154 if (pos->value == MAP_EMPTY_VALUE) {
155 return i;
156 }
157 if (pos->key == key) {
158 return i;
159 }
160 }
161}
162
168static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
169 COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
170 if (pos->value == MAP_EMPTY_VALUE) {
171 pos->key = key;
172 pos->value = 0;
173 }
174 return &pos->value;
175}
176
180static void COVER_map_remove(COVER_map_t *map, U32 key) {
181 U32 i = COVER_map_index(map, key);
182 COVER_map_pair_t *del = &map->data[i];
183 U32 shift = 1;
184 if (del->value == MAP_EMPTY_VALUE) {
185 return;
186 }
187 for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
188 COVER_map_pair_t *const pos = &map->data[i];
189 /* If the position is empty we are done */
190 if (pos->value == MAP_EMPTY_VALUE) {
191 del->value = MAP_EMPTY_VALUE;
192 return;
193 }
194 /* If pos can be moved to del do so */
195 if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
196 del->key = pos->key;
197 del->value = pos->value;
198 del = pos;
199 shift = 1;
200 } else {
201 ++shift;
202 }
203 }
204}
205
209static void COVER_map_destroy(COVER_map_t *map) {
210 if (map->data) {
211 free(map->data);
212 }
213 map->data = NULL;
214 map->size = 0;
215}
216
217/*-*************************************
218* Context
219***************************************/
220
221typedef struct {
222 const BYTE *samples;
223 size_t *offsets;
224 const size_t *samplesSizes;
225 size_t nbSamples;
232 unsigned d;
234
235/* We need a global context for qsort... */
236static COVER_ctx_t *g_coverCtx = NULL;
237
238/*-*************************************
239* Helper functions
240***************************************/
241
245size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
246 size_t sum = 0;
247 unsigned i;
248 for (i = 0; i < nbSamples; ++i) {
249 sum += samplesSizes[i];
250 }
251 return sum;
252}
253
259static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
260 U32 const lhs = *(U32 const *)lp;
261 U32 const rhs = *(U32 const *)rp;
262 return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
263}
267static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
268 U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
269 U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
270 U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
271 if (lhs < rhs) {
272 return -1;
273 }
274 return (lhs > rhs);
275}
276
282static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
283 int result = COVER_cmp(g_coverCtx, lp, rp);
284 if (result == 0) {
285 result = lp < rp ? -1 : 1;
286 }
287 return result;
288}
292static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
293 int result = COVER_cmp8(g_coverCtx, lp, rp);
294 if (result == 0) {
295 result = lp < rp ? -1 : 1;
296 }
297 return result;
298}
299
304static const size_t *COVER_lower_bound(const size_t* first, const size_t* last,
305 size_t value) {
306 size_t count = (size_t)(last - first);
307 assert(last >= first);
308 while (count != 0) {
309 size_t step = count / 2;
310 const size_t *ptr = first;
311 ptr += step;
312 if (*ptr < value) {
313 first = ++ptr;
314 count -= step + 1;
315 } else {
316 count = step;
317 }
318 }
319 return first;
320}
321
327static void
328COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
329 int (*cmp)(COVER_ctx_t *, const void *, const void *),
330 void (*grp)(COVER_ctx_t *, const void *, const void *)) {
331 const BYTE *ptr = (const BYTE *)data;
332 size_t num = 0;
333 while (num < count) {
334 const BYTE *grpEnd = ptr + size;
335 ++num;
336 while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
337 grpEnd += size;
338 ++num;
339 }
340 grp(ctx, ptr, grpEnd);
341 ptr = grpEnd;
342 }
343}
344
345/*-*************************************
346* Cover functions
347***************************************/
348
354static void COVER_group(COVER_ctx_t *ctx, const void *group,
355 const void *groupEnd) {
356 /* The group consists of all the positions with the same first d bytes. */
357 const U32 *grpPtr = (const U32 *)group;
358 const U32 *grpEnd = (const U32 *)groupEnd;
359 /* The dmerId is how we will reference this dmer.
360 * This allows us to map the whole dmer space to a much smaller space, the
361 * size of the suffix array.
362 */
363 const U32 dmerId = (U32)(grpPtr - ctx->suffix);
364 /* Count the number of samples this dmer shows up in */
365 U32 freq = 0;
366 /* Details */
367 const size_t *curOffsetPtr = ctx->offsets;
368 const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
369 /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
370 * different sample than the last.
371 */
372 size_t curSampleEnd = ctx->offsets[0];
373 for (; grpPtr != grpEnd; ++grpPtr) {
374 /* Save the dmerId for this position so we can get back to it. */
375 ctx->dmerAt[*grpPtr] = dmerId;
376 /* Dictionaries only help for the first reference to the dmer.
377 * After that zstd can reference the match from the previous reference.
378 * So only count each dmer once for each sample it is in.
379 */
380 if (*grpPtr < curSampleEnd) {
381 continue;
382 }
383 freq += 1;
384 /* Binary search to find the end of the sample *grpPtr is in.
385 * In the common case that grpPtr + 1 == grpEnd we can skip the binary
386 * search because the loop is over.
387 */
388 if (grpPtr + 1 != grpEnd) {
389 const size_t *sampleEndPtr =
390 COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
391 curSampleEnd = *sampleEndPtr;
392 curOffsetPtr = sampleEndPtr + 1;
393 }
394 }
395 /* At this point we are never going to look at this segment of the suffix
396 * array again. We take advantage of this fact to save memory.
397 * We store the frequency of the dmer in the first position of the group,
398 * which is dmerId.
399 */
400 ctx->suffix[dmerId] = freq;
401}
402
403
415static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
416 COVER_map_t *activeDmers, U32 begin,
417 U32 end,
418 ZDICT_cover_params_t parameters) {
419 /* Constants */
420 const U32 k = parameters.k;
421 const U32 d = parameters.d;
422 const U32 dmersInK = k - d + 1;
423 /* Try each segment (activeSegment) and save the best (bestSegment) */
424 COVER_segment_t bestSegment = {0, 0, 0};
425 COVER_segment_t activeSegment;
426 /* Reset the activeDmers in the segment */
427 COVER_map_clear(activeDmers);
428 /* The activeSegment starts at the beginning of the epoch. */
429 activeSegment.begin = begin;
430 activeSegment.end = begin;
431 activeSegment.score = 0;
432 /* Slide the activeSegment through the whole epoch.
433 * Save the best segment in bestSegment.
434 */
435 while (activeSegment.end < end) {
436 /* The dmerId for the dmer at the next position */
437 U32 newDmer = ctx->dmerAt[activeSegment.end];
438 /* The entry in activeDmers for this dmerId */
439 U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
440 /* If the dmer isn't already present in the segment add its score. */
441 if (*newDmerOcc == 0) {
442 /* The paper suggest using the L-0.5 norm, but experiments show that it
443 * doesn't help.
444 */
445 activeSegment.score += freqs[newDmer];
446 }
447 /* Add the dmer to the segment */
448 activeSegment.end += 1;
449 *newDmerOcc += 1;
450
451 /* If the window is now too large, drop the first position */
452 if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
453 U32 delDmer = ctx->dmerAt[activeSegment.begin];
454 U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
455 activeSegment.begin += 1;
456 *delDmerOcc -= 1;
457 /* If this is the last occurrence of the dmer, subtract its score */
458 if (*delDmerOcc == 0) {
459 COVER_map_remove(activeDmers, delDmer);
460 activeSegment.score -= freqs[delDmer];
461 }
462 }
463
464 /* If this segment is the best so far save it */
465 if (activeSegment.score > bestSegment.score) {
466 bestSegment = activeSegment;
467 }
468 }
469 {
470 /* Trim off the zero frequency head and tail from the segment. */
471 U32 newBegin = bestSegment.end;
472 U32 newEnd = bestSegment.begin;
473 U32 pos;
474 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
475 U32 freq = freqs[ctx->dmerAt[pos]];
476 if (freq != 0) {
477 newBegin = MIN(newBegin, pos);
478 newEnd = pos + 1;
479 }
480 }
481 bestSegment.begin = newBegin;
482 bestSegment.end = newEnd;
483 }
484 {
485 /* Zero out the frequency of each dmer covered by the chosen segment. */
486 U32 pos;
487 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
488 freqs[ctx->dmerAt[pos]] = 0;
489 }
490 }
491 return bestSegment;
492}
493
498static int COVER_checkParameters(ZDICT_cover_params_t parameters,
499 size_t maxDictSize) {
500 /* k and d are required parameters */
501 if (parameters.d == 0 || parameters.k == 0) {
502 return 0;
503 }
504 /* k <= maxDictSize */
505 if (parameters.k > maxDictSize) {
506 return 0;
507 }
508 /* d <= k */
509 if (parameters.d > parameters.k) {
510 return 0;
511 }
512 /* 0 < splitPoint <= 1 */
513 if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
514 return 0;
515 }
516 return 1;
517}
518
522static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
523 if (!ctx) {
524 return;
525 }
526 if (ctx->suffix) {
527 free(ctx->suffix);
528 ctx->suffix = NULL;
529 }
530 if (ctx->freqs) {
531 free(ctx->freqs);
532 ctx->freqs = NULL;
533 }
534 if (ctx->dmerAt) {
535 free(ctx->dmerAt);
536 ctx->dmerAt = NULL;
537 }
538 if (ctx->offsets) {
539 free(ctx->offsets);
540 ctx->offsets = NULL;
541 }
542}
543
551static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
552 const size_t *samplesSizes, unsigned nbSamples,
553 unsigned d, double splitPoint)
554{
555 const BYTE *const samples = (const BYTE *)samplesBuffer;
556 const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
557 /* Split samples into testing and training sets */
558 const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
559 const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
560 const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
561 const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
562 /* Checks */
563 if (totalSamplesSize < MAX(d, sizeof(U64)) ||
564 totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
565 DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
566 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
567 return ERROR(srcSize_wrong);
568 }
569 /* Check if there are at least 5 training samples */
570 if (nbTrainSamples < 5) {
571 DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
572 return ERROR(srcSize_wrong);
573 }
574 /* Check if there's testing sample */
575 if (nbTestSamples < 1) {
576 DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
577 return ERROR(srcSize_wrong);
578 }
579 /* Zero the context */
580 memset(ctx, 0, sizeof(*ctx));
581 DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
582 (unsigned)trainingSamplesSize);
583 DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
584 (unsigned)testSamplesSize);
585 ctx->samples = samples;
586 ctx->samplesSizes = samplesSizes;
587 ctx->nbSamples = nbSamples;
588 ctx->nbTrainSamples = nbTrainSamples;
589 ctx->nbTestSamples = nbTestSamples;
590 /* Partial suffix array */
591 ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
592 ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
593 /* Maps index to the dmerID */
594 ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
595 /* The offsets of each file */
596 ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
597 if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
598 DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
599 COVER_ctx_destroy(ctx);
600 return ERROR(memory_allocation);
601 }
602 ctx->freqs = NULL;
603 ctx->d = d;
604
605 /* Fill offsets from the samplesSizes */
606 {
607 U32 i;
608 ctx->offsets[0] = 0;
609 for (i = 1; i <= nbSamples; ++i) {
610 ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
611 }
612 }
613 DISPLAYLEVEL(2, "Constructing partial suffix array\n");
614 {
615 /* suffix is a partial suffix array.
616 * It only sorts suffixes by their first parameters.d bytes.
617 * The sort is stable, so each dmer group is sorted by position in input.
618 */
619 U32 i;
620 for (i = 0; i < ctx->suffixSize; ++i) {
621 ctx->suffix[i] = i;
622 }
623 /* qsort doesn't take an opaque pointer, so pass as a global.
624 * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
625 */
626 g_coverCtx = ctx;
627#if defined(__OpenBSD__)
628 mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
629 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
630#else
631 qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
632 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
633#endif
634 }
635 DISPLAYLEVEL(2, "Computing frequencies\n");
636 /* For each dmer group (group of positions with the same first d bytes):
637 * 1. For each position we set dmerAt[position] = dmerID. The dmerID is
638 * (groupBeginPtr - suffix). This allows us to go from position to
639 * dmerID so we can look up values in freq.
640 * 2. We calculate how many samples the dmer occurs in and save it in
641 * freqs[dmerId].
642 */
643 COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
644 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
645 ctx->freqs = ctx->suffix;
646 ctx->suffix = NULL;
647 return 0;
648}
649
650void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
651{
652 const double ratio = (double)nbDmers / (double)maxDictSize;
653 if (ratio >= 10) {
654 return;
655 }
656 LOCALDISPLAYLEVEL(displayLevel, 1,
657 "WARNING: The maximum dictionary size %u is too large "
658 "compared to the source size %u! "
659 "size(source)/size(dictionary) = %f, but it should be >= "
660 "10! This may lead to a subpar dictionary! We recommend "
661 "training on sources at least 10x, and preferably 100x "
662 "the size of the dictionary! \n", (U32)maxDictSize,
663 (U32)nbDmers, ratio);
664}
665
667 U32 nbDmers, U32 k, U32 passes)
668{
669 const U32 minEpochSize = k * 10;
670 COVER_epoch_info_t epochs;
671 epochs.num = MAX(1, maxDictSize / k / passes);
672 epochs.size = nbDmers / epochs.num;
673 if (epochs.size >= minEpochSize) {
674 assert(epochs.size * epochs.num <= nbDmers);
675 return epochs;
676 }
677 epochs.size = MIN(minEpochSize, nbDmers);
678 epochs.num = nbDmers / epochs.size;
679 assert(epochs.size * epochs.num <= nbDmers);
680 return epochs;
681}
682
686static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
687 COVER_map_t *activeDmers, void *dictBuffer,
688 size_t dictBufferCapacity,
689 ZDICT_cover_params_t parameters) {
690 BYTE *const dict = (BYTE *)dictBuffer;
691 size_t tail = dictBufferCapacity;
692 /* Divide the data into epochs. We will select one segment from each epoch. */
694 (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
695 const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
696 size_t zeroScoreRun = 0;
697 size_t epoch;
698 DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
699 (U32)epochs.num, (U32)epochs.size);
700 /* Loop through the epochs until there are no more segments or the dictionary
701 * is full.
702 */
703 for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
704 const U32 epochBegin = (U32)(epoch * epochs.size);
705 const U32 epochEnd = epochBegin + epochs.size;
706 size_t segmentSize;
707 /* Select a segment */
708 COVER_segment_t segment = COVER_selectSegment(
709 ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
710 /* If the segment covers no dmers, then we are out of content.
711 * There may be new content in other epochs, for continue for some time.
712 */
713 if (segment.score == 0) {
714 if (++zeroScoreRun >= maxZeroScoreRun) {
715 break;
716 }
717 continue;
718 }
719 zeroScoreRun = 0;
720 /* Trim the segment if necessary and if it is too small then we are done */
721 segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
722 if (segmentSize < parameters.d) {
723 break;
724 }
725 /* We fill the dictionary from the back to allow the best segments to be
726 * referenced with the smallest offsets.
727 */
728 tail -= segmentSize;
729 memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
731 2, "\r%u%% ",
732 (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
733 }
734 DISPLAYLEVEL(2, "\r%79s\r", "");
735 return tail;
736}
737
738ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover(
739 void *dictBuffer, size_t dictBufferCapacity,
740 const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
741 ZDICT_cover_params_t parameters)
742{
743 BYTE* const dict = (BYTE*)dictBuffer;
744 COVER_ctx_t ctx;
745 COVER_map_t activeDmers;
746 parameters.splitPoint = 1.0;
747 /* Initialize global data */
748 g_displayLevel = (int)parameters.zParams.notificationLevel;
749 /* Checks */
750 if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
751 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
752 return ERROR(parameter_outOfBound);
753 }
754 if (nbSamples == 0) {
755 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
756 return ERROR(srcSize_wrong);
757 }
758 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
759 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
760 ZDICT_DICTSIZE_MIN);
761 return ERROR(dstSize_tooSmall);
762 }
763 /* Initialize context and activeDmers */
764 {
765 size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
766 parameters.d, parameters.splitPoint);
767 if (ZSTD_isError(initVal)) {
768 return initVal;
769 }
770 }
771 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
772 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
773 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
774 COVER_ctx_destroy(&ctx);
775 return ERROR(memory_allocation);
776 }
777
778 DISPLAYLEVEL(2, "Building dictionary\n");
779 {
780 const size_t tail =
781 COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
782 dictBufferCapacity, parameters);
783 const size_t dictionarySize = ZDICT_finalizeDictionary(
784 dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
785 samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
786 if (!ZSTD_isError(dictionarySize)) {
787 DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
788 (unsigned)dictionarySize);
789 }
790 COVER_ctx_destroy(&ctx);
791 COVER_map_destroy(&activeDmers);
792 return dictionarySize;
793 }
794}
795
796
797
798size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
799 const size_t *samplesSizes, const BYTE *samples,
800 size_t *offsets,
801 size_t nbTrainSamples, size_t nbSamples,
802 BYTE *const dict, size_t dictBufferCapacity) {
803 size_t totalCompressedSize = ERROR(GENERIC);
804 /* Pointers */
805 ZSTD_CCtx *cctx;
806 ZSTD_CDict *cdict;
807 void *dst;
808 /* Local variables */
809 size_t dstCapacity;
810 size_t i;
811 /* Allocate dst with enough space to compress the maximum sized sample */
812 {
813 size_t maxSampleSize = 0;
814 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
815 for (; i < nbSamples; ++i) {
816 maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
817 }
818 dstCapacity = ZSTD_compressBound(maxSampleSize);
819 dst = malloc(dstCapacity);
820 }
821 /* Create the cctx and cdict */
822 cctx = ZSTD_createCCtx();
823 cdict = ZSTD_createCDict(dict, dictBufferCapacity,
824 parameters.zParams.compressionLevel);
825 if (!dst || !cctx || !cdict) {
826 goto _compressCleanup;
827 }
828 /* Compress each sample and sum their sizes (or error) */
829 totalCompressedSize = dictBufferCapacity;
830 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
831 for (; i < nbSamples; ++i) {
832 const size_t size = ZSTD_compress_usingCDict(
833 cctx, dst, dstCapacity, samples + offsets[i],
834 samplesSizes[i], cdict);
835 if (ZSTD_isError(size)) {
836 totalCompressedSize = size;
837 goto _compressCleanup;
838 }
839 totalCompressedSize += size;
840 }
841_compressCleanup:
842 ZSTD_freeCCtx(cctx);
843 ZSTD_freeCDict(cdict);
844 if (dst) {
845 free(dst);
846 }
847 return totalCompressedSize;
848}
849
850
855 if (best==NULL) return; /* compatible with init on NULL */
856 (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
857 (void)ZSTD_pthread_cond_init(&best->cond, NULL);
858 best->liveJobs = 0;
859 best->dict = NULL;
860 best->dictSize = 0;
861 best->compressedSize = (size_t)-1;
862 memset(&best->parameters, 0, sizeof(best->parameters));
863}
864
869 if (!best) {
870 return;
871 }
873 while (best->liveJobs != 0) {
874 ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
875 }
877}
878
883 if (!best) {
884 return;
885 }
886 COVER_best_wait(best);
887 if (best->dict) {
888 free(best->dict);
889 }
892}
893
899 if (!best) {
900 return;
901 }
903 ++best->liveJobs;
905}
906
913 ZDICT_cover_params_t parameters,
914 COVER_dictSelection_t selection)
915{
916 void* dict = selection.dictContent;
917 size_t compressedSize = selection.totalCompressedSize;
918 size_t dictSize = selection.dictSize;
919 if (!best) {
920 return;
921 }
922 {
923 size_t liveJobs;
925 --best->liveJobs;
926 liveJobs = best->liveJobs;
927 /* If the new dictionary is better */
928 if (compressedSize < best->compressedSize) {
929 /* Allocate space if necessary */
930 if (!best->dict || best->dictSize < dictSize) {
931 if (best->dict) {
932 free(best->dict);
933 }
934 best->dict = malloc(dictSize);
935 if (!best->dict) {
936 best->compressedSize = ERROR(GENERIC);
937 best->dictSize = 0;
940 return;
941 }
942 }
943 /* Save the dictionary, parameters, and size */
944 if (dict) {
945 memcpy(best->dict, dict, dictSize);
946 best->dictSize = dictSize;
947 best->parameters = parameters;
948 best->compressedSize = compressedSize;
949 }
950 }
951 if (liveJobs == 0) {
953 }
955 }
956}
957
958static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
959{
961 ds.dictContent = buf;
962 ds.dictSize = s;
963 ds.totalCompressedSize = csz;
964 return ds;
965}
966
968 return setDictSelection(NULL, 0, error);
969}
970
972 return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
973}
974
976 free(selection.dictContent);
977}
978
979COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
980 size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
981 size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
982
983 size_t largestDict = 0;
984 size_t largestCompressed = 0;
985 BYTE* customDictContentEnd = customDictContent + dictContentSize;
986
987 BYTE* largestDictbuffer = (BYTE*)malloc(dictBufferCapacity);
988 BYTE* candidateDictBuffer = (BYTE*)malloc(dictBufferCapacity);
989 double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
990
991 if (!largestDictbuffer || !candidateDictBuffer) {
992 free(largestDictbuffer);
993 free(candidateDictBuffer);
994 return COVER_dictSelectionError(dictContentSize);
995 }
996
997 /* Initial dictionary size and compressed size */
998 memcpy(largestDictbuffer, customDictContent, dictContentSize);
999 dictContentSize = ZDICT_finalizeDictionary(
1000 largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
1001 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1002
1003 if (ZDICT_isError(dictContentSize)) {
1004 free(largestDictbuffer);
1005 free(candidateDictBuffer);
1006 return COVER_dictSelectionError(dictContentSize);
1007 }
1008
1009 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1010 samplesBuffer, offsets,
1011 nbCheckSamples, nbSamples,
1012 largestDictbuffer, dictContentSize);
1013
1014 if (ZSTD_isError(totalCompressedSize)) {
1015 free(largestDictbuffer);
1016 free(candidateDictBuffer);
1017 return COVER_dictSelectionError(totalCompressedSize);
1018 }
1019
1020 if (params.shrinkDict == 0) {
1021 free(candidateDictBuffer);
1022 return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
1023 }
1024
1025 largestDict = dictContentSize;
1026 largestCompressed = totalCompressedSize;
1027 dictContentSize = ZDICT_DICTSIZE_MIN;
1028
1029 /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1030 while (dictContentSize < largestDict) {
1031 memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1032 dictContentSize = ZDICT_finalizeDictionary(
1033 candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1034 samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1035
1036 if (ZDICT_isError(dictContentSize)) {
1037 free(largestDictbuffer);
1038 free(candidateDictBuffer);
1039 return COVER_dictSelectionError(dictContentSize);
1040
1041 }
1042
1043 totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1044 samplesBuffer, offsets,
1045 nbCheckSamples, nbSamples,
1046 candidateDictBuffer, dictContentSize);
1047
1048 if (ZSTD_isError(totalCompressedSize)) {
1049 free(largestDictbuffer);
1050 free(candidateDictBuffer);
1051 return COVER_dictSelectionError(totalCompressedSize);
1052 }
1053
1054 if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
1055 free(largestDictbuffer);
1056 return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
1057 }
1058 dictContentSize *= 2;
1059 }
1060 dictContentSize = largestDict;
1061 totalCompressedSize = largestCompressed;
1062 free(candidateDictBuffer);
1063 return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
1064}
1065
1073 ZDICT_cover_params_t parameters;
1075
1081static void COVER_tryParameters(void *opaque)
1082{
1083 /* Save parameters as local variables */
1085 const COVER_ctx_t *const ctx = data->ctx;
1086 const ZDICT_cover_params_t parameters = data->parameters;
1087 size_t dictBufferCapacity = data->dictBufferCapacity;
1088 size_t totalCompressedSize = ERROR(GENERIC);
1089 /* Allocate space for hash table, dict, and freqs */
1090 COVER_map_t activeDmers;
1091 BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1093 U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1094 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1095 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1096 goto _cleanup;
1097 }
1098 if (!dict || !freqs) {
1099 DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1100 goto _cleanup;
1101 }
1102 /* Copy the frequencies because we need to modify them */
1103 memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1104 /* Build the dictionary */
1105 {
1106 const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1107 dictBufferCapacity, parameters);
1108 selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1109 ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1110 totalCompressedSize);
1111
1112 if (COVER_dictSelectionIsError(selection)) {
1113 DISPLAYLEVEL(1, "Failed to select dictionary\n");
1114 goto _cleanup;
1115 }
1116 }
1117_cleanup:
1118 free(dict);
1119 COVER_best_finish(data->best, parameters, selection);
1120 free(data);
1121 COVER_map_destroy(&activeDmers);
1122 COVER_dictSelectionFree(selection);
1123 free(freqs);
1124}
1125
1126ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1127 void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1128 const size_t* samplesSizes, unsigned nbSamples,
1129 ZDICT_cover_params_t* parameters)
1130{
1131 /* constants */
1132 const unsigned nbThreads = parameters->nbThreads;
1133 const double splitPoint =
1134 parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1135 const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1136 const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1137 const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1138 const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1139 const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1140 const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1141 const unsigned kIterations =
1142 (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1143 const unsigned shrinkDict = 0;
1144 /* Local variables */
1145 const int displayLevel = parameters->zParams.notificationLevel;
1146 unsigned iteration = 1;
1147 unsigned d;
1148 unsigned k;
1149 COVER_best_t best;
1150 POOL_ctx *pool = NULL;
1151 int warned = 0;
1152
1153 /* Checks */
1154 if (splitPoint <= 0 || splitPoint > 1) {
1155 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1156 return ERROR(parameter_outOfBound);
1157 }
1158 if (kMinK < kMaxD || kMaxK < kMinK) {
1159 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1160 return ERROR(parameter_outOfBound);
1161 }
1162 if (nbSamples == 0) {
1163 DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1164 return ERROR(srcSize_wrong);
1165 }
1166 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1167 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1168 ZDICT_DICTSIZE_MIN);
1169 return ERROR(dstSize_tooSmall);
1170 }
1171 if (nbThreads > 1) {
1172 pool = POOL_create(nbThreads, 1);
1173 if (!pool) {
1174 return ERROR(memory_allocation);
1175 }
1176 }
1177 /* Initialization */
1178 COVER_best_init(&best);
1179 /* Turn down global display level to clean up display at level 2 and below */
1180 g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1181 /* Loop through d first because each new value needs a new context */
1182 LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1183 kIterations);
1184 for (d = kMinD; d <= kMaxD; d += 2) {
1185 /* Initialize the context for this value of d */
1186 COVER_ctx_t ctx;
1187 LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1188 {
1189 const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1190 if (ZSTD_isError(initVal)) {
1191 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1192 COVER_best_destroy(&best);
1193 POOL_free(pool);
1194 return initVal;
1195 }
1196 }
1197 if (!warned) {
1198 COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1199 warned = 1;
1200 }
1201 /* Loop through k reusing the same context */
1202 for (k = kMinK; k <= kMaxK; k += kStepSize) {
1203 /* Prepare the arguments */
1206 LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1207 if (!data) {
1208 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1209 COVER_best_destroy(&best);
1210 COVER_ctx_destroy(&ctx);
1211 POOL_free(pool);
1212 return ERROR(memory_allocation);
1213 }
1214 data->ctx = &ctx;
1215 data->best = &best;
1216 data->dictBufferCapacity = dictBufferCapacity;
1217 data->parameters = *parameters;
1218 data->parameters.k = k;
1219 data->parameters.d = d;
1220 data->parameters.splitPoint = splitPoint;
1221 data->parameters.steps = kSteps;
1222 data->parameters.shrinkDict = shrinkDict;
1223 data->parameters.zParams.notificationLevel = g_displayLevel;
1224 /* Check the parameters */
1225 if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1226 DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1227 free(data);
1228 continue;
1229 }
1230 /* Call the function and pass ownership of data to it */
1231 COVER_best_start(&best);
1232 if (pool) {
1233 POOL_add(pool, &COVER_tryParameters, data);
1234 } else {
1235 COVER_tryParameters(data);
1236 }
1237 /* Print status */
1238 LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
1239 (unsigned)((iteration * 100) / kIterations));
1240 ++iteration;
1241 }
1242 COVER_best_wait(&best);
1243 COVER_ctx_destroy(&ctx);
1244 }
1245 LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1246 /* Fill the output buffer and parameters with output of the best parameters */
1247 {
1248 const size_t dictSize = best.dictSize;
1249 if (ZSTD_isError(best.compressedSize)) {
1250 const size_t compressedSize = best.compressedSize;
1251 COVER_best_destroy(&best);
1252 POOL_free(pool);
1253 return compressedSize;
1254 }
1255 *parameters = best.parameters;
1256 memcpy(dictBuffer, best.dict, dictSize);
1257 COVER_best_destroy(&best);
1258 POOL_free(pool);
1259 return dictSize;
1260 }
1261}
MEM_STATIC unsigned ZSTD_highbit32(U32 val)
Definition: bits.h:169
#define WIN_CDECL
Definition: compiler.h:53
#define LOCALDISPLAYUPDATE(displayLevel, l,...)
Definition: cover.c:79
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover(void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, ZDICT_cover_params_t parameters)
Definition: cover.c:738
struct COVER_tryParameters_data_s COVER_tryParameters_data_t
#define COVER_DEFAULT_SPLITPOINT
Definition: cover.c:52
COVER_dictSelection_t COVER_dictSelectionError(size_t error)
Definition: cover.c:967
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers, U32 k, U32 passes)
Definition: cover.c:666
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover(void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, ZDICT_cover_params_t *parameters)
Definition: cover.c:1126
#define DISPLAYUPDATE(l,...)
Definition: cover.c:87
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
Definition: cover.c:650
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters, COVER_dictSelection_t selection)
Definition: cover.c:912
COVER_dictSelection_t COVER_selectDict(BYTE *customDictContent, size_t dictBufferCapacity, size_t dictContentSize, const BYTE *samplesBuffer, const size_t *samplesSizes, unsigned nbFinalizeSamples, size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t *offsets, size_t totalCompressedSize)
Definition: cover.c:979
struct COVER_map_pair_t_s COVER_map_pair_t
struct COVER_map_s COVER_map_t
#define MAP_EMPTY_VALUE
Definition: cover.c:98
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters, const size_t *samplesSizes, const BYTE *samples, size_t *offsets, size_t nbTrainSamples, size_t nbSamples, BYTE *const dict, size_t dictBufferCapacity)
Definition: cover.c:798
void COVER_dictSelectionFree(COVER_dictSelection_t selection)
Definition: cover.c:975
void COVER_best_wait(COVER_best_t *best)
Definition: cover.c:868
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection)
Definition: cover.c:971
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples)
Definition: cover.c:245
#define DISPLAYLEVEL(l,...)
Definition: cover.c:72
void COVER_best_start(COVER_best_t *best)
Definition: cover.c:898
#define COVER_MAX_SAMPLES_SIZE
Definition: cover.c:51
void COVER_best_init(COVER_best_t *best)
Definition: cover.c:854
#define LOCALDISPLAYLEVEL(displayLevel, l,...)
Definition: cover.c:67
void COVER_best_destroy(COVER_best_t *best)
Definition: cover.c:882
#define assert(condition)
Definition: debug.h:74
#define ERROR(name)
Definition: error_private.h:55
unsigned long long U64
Definition: mem.h:73
unsigned char BYTE
Definition: mem.h:58
MEM_STATIC U64 MEM_readLE64(const void *memPtr)
Definition: mem.h:336
unsigned int U32
Definition: mem.h:69
@ key
the parser read a key of a value in an object
std::size_t hash(const BasicJsonType &j)
hash a JSON value
Definition: json.hpp:6110
uint32_t size(sys::state const &state)
MOD_PROV_LIST constexpr uint32_t count
Definition: modifiers.hpp:207
#define MIN(a, b)
#define MAX(a, b)
POOL_ctx * POOL_create(size_t numThreads, size_t queueSize)
Definition: pool.c:326
void POOL_add(POOL_ctx *ctx, POOL_function function, void *opaque)
Definition: pool.c:354
void POOL_free(POOL_ctx *ctx)
Definition: pool.c:339
ZSTD_pthread_mutex_t mutex
Definition: cover.h:28
ZSTD_pthread_cond_t cond
Definition: cover.h:29
size_t compressedSize
Definition: cover.h:34
void * dict
Definition: cover.h:31
size_t liveJobs
Definition: cover.h:30
size_t dictSize
Definition: cover.h:32
ZDICT_cover_params_t parameters
Definition: cover.h:33
const size_t * samplesSizes
Definition: cover.c:224
size_t nbTrainSamples
Definition: cover.c:226
const BYTE * samples
Definition: cover.c:222
unsigned d
Definition: cover.c:232
size_t nbTestSamples
Definition: cover.c:227
size_t * offsets
Definition: cover.c:223
U32 * suffix
Definition: cover.c:228
size_t suffixSize
Definition: cover.c:229
size_t nbSamples
Definition: cover.c:225
U32 * dmerAt
Definition: cover.c:231
U32 * freqs
Definition: cover.c:230
BYTE * dictContent
Definition: cover.h:58
size_t dictSize
Definition: cover.h:59
size_t totalCompressedSize
Definition: cover.h:60
COVER_map_pair_t * data
Definition: cover.c:105
U32 sizeLog
Definition: cover.c:106
U32 sizeMask
Definition: cover.c:108
U32 size
Definition: cover.c:107
const COVER_ctx_t * ctx
Definition: cover.c:1070
ZDICT_cover_params_t parameters
Definition: cover.c:1073
COVER_best_t * best
Definition: cover.c:1071
#define ZSTD_pthread_mutex_init(a, b)
Definition: threading.h:130
#define ZSTD_pthread_mutex_unlock(a)
Definition: threading.h:133
#define ZSTD_pthread_cond_signal(a)
Definition: threading.h:139
#define ZSTD_pthread_cond_wait(a, b)
Definition: threading.h:138
#define ZSTD_pthread_cond_broadcast(a)
Definition: threading.h:140
#define ZSTD_pthread_mutex_lock(a)
Definition: threading.h:132
#define ZSTD_pthread_mutex_destroy(a)
Definition: threading.h:131
#define ZSTD_pthread_cond_init(a, b)
Definition: threading.h:136
#define ZSTD_pthread_cond_destroy(a)
Definition: threading.h:137
size_t ZDICT_finalizeDictionary(void *dictBuffer, size_t dictBufferCapacity, const void *customDictContent, size_t dictContentSize, const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, ZDICT_params_t params)
Definition: zdict.c:858
unsigned ZDICT_isError(size_t errorCode)
Definition: zdict.c:98
size_t ZSTD_compressBound(size_t srcSize)
Definition: zstd_compress.c:69
ZSTD_CDict * ZSTD_createCDict(const void *dict, size_t dictSize, int compressionLevel)
ZSTD_CCtx * ZSTD_createCCtx(void)
Definition: zstd_compress.c:96
size_t ZSTD_compress_usingCDict(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity, const void *src, size_t srcSize, const ZSTD_CDict *cdict)
size_t ZSTD_freeCCtx(ZSTD_CCtx *cctx)
size_t ZSTD_freeCDict(ZSTD_CDict *cdict)
#define ZSTD_isError
Definition: zstd_internal.h:48